Finite Element Model of SCOLE Laboratory Configuration

by

Beth Lee Jeffrey P. Williams Dean Sparks NASA Langley Research Center

FINITE ELEMENT MODEL OF SCOLE LABORATORY CONFIGURATION

Beth Lee

· 我也有为 [一寸 23]

Jeffrey P. Williams

Dean Sparks, Jr.

NASA Langley Research Center

Mail Stop 161

Hampton, VA 23665

(804) -865-4591

MODEL DESCRIPTION

DEFINE ELEMENT PROPERTIES:

- MATERIAL CONSTANTS
 MODULUS OF ELASTICITY,
 POISSON'S RATIO,
 DENSITY
 - MAST, REFLECTOR, RIGID LINKS AS BEAM ELEMENTS
 - CABLE AS BAR ELEMENT (AXIAL STIFFNESS ONLY)
 - SHUTTLE AS VERY STIFF BEAM (ASSUME RIGID)

JOINT LOCATIONS AND CONNECTIONS:

 44 JOINTS TOTAL, 7 FOR CABLE, 12 FOR MAST, 6 FOR REFLECTOR AND REST FOR RIGID MASSES

JOINT LOCATIONS

SCOLE

SCALE S

MODEL DESCRIPTION (Continued)

TWO BOUNDARY CONDITIONS MODELLED:

- CASE 1-SUSPENDED (6 DOF FOR ALL JOINTS EXCEPT TOP OF CABLE)
- CASE 2- CANTILEVERED CABLE, SHUTTLE PLATFORM FIXED IN ALL DOF

INCLUDE RIGID MASSES AND CONNECTIONS:

- ACTUATORS
- SENSORS
- SHUTTLE PLATFORM AND COMPONENTS

CALCULATIONS:

- STIFFNESS AND MASS MATRICES
- INITIAL STRESSES (DUE TO GRAVITY LOADING)
- STATIC DISPLACEMENTS AND REACTIONS
- EIGENSOLUTIONS FREQUENCIES AND MODE SHAPES

FREQUENCY DATA FOR CANTILEVERED CASE (FIG 1,2)

	FREQ (HZ)			
MODE	EAL	LAB	DELTA-%	EAL/LAB RATIO
			~~~~~	
1	0.443	0.44	0.7	1.01
2	0.447	0.44	1.6	1.02
3	1.504	1.54	2.3	0.98
, 4	2.913	3.00	3.0	0.97
5	4.345	4.36	0.3	0.99
6	6.821	3.08	121.5	2.21

#### FREQUENCY DATA FOR SUSPENDED CASE (FIG 3,4)

	FREQ (HZ)			
MODE	EAL	LAB	DELTA-%	EAL/LAB RATIO
	~~~~~~			
6	0.566	0.55	2.9	1.03
7	0.638	0.65	1.8	0.98
8	1.514	1.62	6.5	0.93
9	2.940	3.10	5.0	0.95

RATIO OF SUSPENDED TO CANTILEVERED FREQUENCIES (FIG 5,6)

MODE*	EAL	LAB
1	1.28	1.25
2	1.43	1.48
3	1.01	1.05
4	1.01	1.03

* NOTE: SUSPENDED MODES 6-9 CORRESPOND TO CANTILEVERED MODES 1-4

EAL PLOT 1st PITCH SUSPENDED CASE

MODE. FREQ (HZ)

 \cdot 5657 X10 + 00

ID= 1/1/6

SCOLE VIBRATIONAL MODE SHAPE 6

157 o

EAL PLOT 1st TORSIONAL SUSPENDED CASE

MODE. FREQ (HZ)

. 1513 X10 + 01

ID= 1/1/8

SCOLE VIBRATIONAL MODE SHAPE 8

158

SCALE

innifa mir

.: .: .: .:

COMMENTS

- EAL, LAB DATA IN GOOD AGREEMENT
- HIGHER MODES TEND TO HAVE SLIGHTLY LARGER DIFFERENCES BETWEEN EAL & LAB RESULTS
- FOR HIGHER MODES, FREQUENCIES OF THE SUSPENDED AND CANTILEVERED CASES ARE SIMILIAR; THE MODE SHAPES ARE ALSO CLOSE

CONCLUSIONS

- EAL, LAB FREQUENCY DATA MATCH WELL
- NEED TO GET MORE ACCURATE MEASURE-MENTS FROM LAB, AND WITH MORE MODES FOR BETTER COMPARISON COMPUTER MODEL & LAB
- FOR HIGHER MODES, THE CANTILEVERED CONDITION MAY BE SUBSTITUTED FOR THE SUSPENDED, THUS REDUCING THE NUMBER OF NODES AND DOF'S IN COMPUTATION